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Linear stability of Couette flow modified by transpiration applied at the lower wall
is considered. It is shown that transpiration can induce flow instability resulting in
the appearance of streamwise-vortex-like structures. It is argued that the instability
is driven by centrifugal forces associated with streamline curvature. The conditions
leading to the onset of the instability depend on the amplitude and wavelength of
the transpiration and can be expressed in terms of the critical Reynolds number.
The global critical conditions describing the minimum critical Reynolds number
required for the onset of the instability for the specified amplitude of the transpiration
regardless of its wavelength are also given. The threshold amplitude required for the
onset varies approximately as ∼Re−1.15 for large Re, where the Reynolds number used
is based on the velocity difference between the walls and the channel half-width. The
existence of a global threshold, below which the instability cannot occur regardless of
the amplitude of the transpiration, has been demonstrated. This threshold corresponds
approximately to Re = 84.

1. Introduction
These has been remarkable progress in recent years in understanding of transition

to turbulence. This is especially true for systems undergoing supercritical primary
bifurcations. Supercriticality is characterized by the existence of a bifurcated state
above a certain linear stability threshold expressed in terms of a critical Reynolds
number Recr . Above the threshold, the system is unstable to infinitesimal disturbances
but remains closed to the basic state, yielding a continuous transition as Re increases.
Its evolution can be followed for small distance above Recr using weakly nonlinear
stability theory. Rayleigh–Bénard convection is a good prototype of such a system.
In contrast, in the subcritical case the bifurcated state co-exists with the basic state
below the threshold. Since the bifurcated state is at a finite distance from the basic
state, the transition is discontinuous. Plane Poiseuille flow provides a good example
of such a system. The case of plane Couette flow is more dramatic as it never
becomes linearly unstable (Romanov 1973). It has been observed, nevertheless, that
this flow undergoes transition at Reynolds numbers (based on the velocity difference
between the walls and the channel half-width) as low as between 600 and 800
(Tillmark & Alfredsson 1992; Daviaud, Hegseth & Bergé 1992). This makes Couette
flow particularly attractive for the study of non-trivial nonlinear states as well as
for the study of the so-called bypass transition. The term ‘by-pass transition’ loosely
denotes any scenario that does not rely on the growth of the least stable eigenmode.
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The transition process in Couette flow may be ‘natural’, where the threshold depends
on the noise level, or could be ‘triggered’ by introduction of special disturbances.
The experimental data are very limited, mainly due to the difficulties in creating a
well-controlled flow. Leutheusser & Chu (1971) and Aydin & Leutheusser (1979)
considered ‘natural transition’ and gave the threshold at Re ≈ 600 while Malerud,
Måløy & Goldburg (1995) estimated it to be Re ≈ 740. Tillmark & Alfredson (1992)
showed that isolated, localized, instantaneous pulses could destabilize the flow for
Re ≈ 720. Daviaud et al. (1992) used a slightly different configuration and obtained
Re ≈ 740. Direct numerical simulations (Lundbladh & Johansson 1991) showed the
existence of sustained turbulent spots for Re > 750. Dauchot & Daviaud (1995a)
suggested the existence of a critical disturbance amplitude, which is a function of
Re. This amplitude decreases rapidly when Re is reduced to Re ≈ 650. Experiments
by Bottin et al. (1998b) and Bottin & Chaté (1998), involving quenching the flow
down from sufficiently large Reynolds numbers, confirmed Re ≈ 650 to be the lower
stability limit for turbulent flow. This is in agreement with the numerical experiments
of Hamilton, Kim & Waleffe (1995), that demonstrated that turbulent Couette flow
could not be maintained below Re ≈ 660.

One approach in the theoretical analysis of transition in Couette flow is to assume
that ‘bifurcation’ occurs at Re = ∞ and to seek finite-amplitude solutions at a
finite Reynolds number (preferably corresponding to the experimentally observed
values). As the number and configuration of fixed points of the relevant dynamical
system is unknown, the approach followed involves continuation from an ‘adjacent’
known non-trivial fixed point. Nagata (1990) considered Taylor–Couette flow and
in the limit of zero rotation isolated steady solutions in the form of modulated
rolls oriented along the flow. These rolls exist down to Re ≈ 250. Clever & Busse
(1992, 1997) found the same solutions in the case of the Bénard–Couette problem
of fluid heated from below in the limit of vanishing Rayleigh number. Barkley &
Tuckerman (1999) carried out a stability analysis of Couette flow modified by a
spanwise ribbon and found a subcritical instability giving rise to streamwise vortices
with a critical value of Re about 460. They did not determine saturation states.
Cherhabili & Ehrenstein (1995) found a different class of solutions by extending
nonlinear equilibrium states for two-dimensional travelling waves from Poiseuille–
Couette flow to Couette limit. Such states, which become stationary in the limit, may
exist only for Re � 3000. They may evolve into new three-dimensional states that can
exist for Re � 2000 (Cherhabili & Ehrenstein 1997). These structures are possibly less
relevant to transition as they occur at Re much higher than the observed transitional
Reynolds number. Longitudinal rolls are important as they represent key ingredients
of the cyclic process possibly responsible for transition (Hamilton et al. 1995;
Waleffe 1997; Reddy et al. 1998); this process involves streamwise vortices turning
into streaks, breakdown of streaks into turbulence, and subsequent regeneration
of vortices after damping of small-scale motions. There is, however, little direct
experimental evidence for their existence. Dauchot & Daviaud (1995b) demonstrated
the existence of streamwise vortices in Couette flow modified by a spanwise wire.
Bottin, Dauchot & Daviaud (1998a) discussed experiments with turbulent spots as
well as spanwise wires which indirectly support conjecture that a related non-trivial
solution exists. Stability analysis of modified Couette flow (Barkley & Tuckerman
1999) showed that vortices originate from subcritical instability and thus supports such
conjecture.

An alternative approach is to look directly at the initial value problems. In the case
of linearized systems, all disturbances must eventually decay, with the slowest decaying
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mode being spanwise invariant due to Squire’s theorem. The existence of a slowly
decaying mode may give rise to a three-dimensional, exponentially growing instability
(Orszag & Patera 1983). This instability does not occur for Re less than about 2000
and requires finite magnitude of the primary mode. A large temporal growth of
infinitesimal disturbances is possible due to the non-normality of the operator. This
growth could be O(1000) in the case of initial conditions corresponding to streamwise
vortices for transitional Re (Butler & Farrell 1992); it increases proportionally to
Re2 for large Re (Schmid & Henningson 2001) and can trigger nonlinear effects
(Trefethen et al. 1993). There is a related question of the threshold value for the
initial size of disturbances. Perturbations decay to zero below this threshold and may
lead to turbulence above this threshold. It has been suggested that the threshold
decreases as Re−γ (Trefethen et al. 1993). Calculations by Reddy et al. (1998) suggest
a γ -value of approximately 5/4. Asymptotic analysis by Chapman (2002) suggests
an approximate γ -value of 1. Kreiss, Lundbladh & Henningson (1994) showed the
upper limit of γ to be 21/4.

The third approach considers effects of slight perturbations in Couette flow on the
stability characteristics with the premise that the experimentally observed Couette
flow is never ideal. Trefethen et al. (1993) demonstrated extreme sensitivity of
spectra of non-normal operators to perturbations of the operator, suggesting that
slightly perturbed Couette flow may be linearly unstable. Lerner & Knobloch (1988)
considered a small defect in Couette flow and demonstrated that it leads to an
inviscid linear instability. Dubrulle & Zahn (1991) generalized this approach by adding
viscous effects. Dauchot & Daviaud (1995b) disturbed the flow by placing a wire in
the spanwise direction and observed instability in the form of streamwise vortices.
Theoretical analysis of the flow modified in a similar manner showed subcritical
instability (Barkley & Tuckerman 1999). Floryan (2002) considered Couette flow over
a wavy wall and demonstrated the existence of instability driven by a centrifugal effect.
Bottaro, Corbett & Luchini (2003) identified the form of the base-flow variations that
has the largest effect on the eigenvalues.

The presence of spatially varying wall transpiration deflects particles from otherwise
rectilinear trajectories. The resulting streamlines are curved, giving rise to a centrifugal
force field that can potentially activate the inviscid instability mechanism first
discussed by Rayleigh (1916). The characteristic signature of this instability is that the
amplified disturbances have the form of counter-rotating vortices with axis parallel
to the flow direction. Taylor (1923) demonstrated the existence of this instability
in viscous flow between concentric rotating cylinders. Dean (1928) analysed similar
instability in curved channels. Görtler (1941) demonstrated its existence in boundary
layers over concave surfaces. Floryan (1986) showed that the instability is active in
flows over concave as well as convex surfaces. The wall curvature was constant in all
these studies, permitting description of the critical stability conditions in terms of a
single parameter.

The general objective of this paper is to investigate the effect of variable trans-
piration (suction/blowing) applied at the lower wall. Transpiration represents a non-
intrusive method for flow control and thus it is interesting to identify its optimal
properties, i.e. the form of the ‘smallest’ transpiration that produces the ‘largest’
changes in the flow. Loudspeakers connected to perforated wall segments can produce
transpiration with zero mean, providing a wide range of options for flow forcing. In
this sense, wall transpiration is similar to synthetic jets, which are being widely studied
at present (Glezer & Amitay 2002). Loudspeakers have been used widely as a source
of controlled external disturbances in the analysis of laminar–turbulent transition in
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boundary layers (Saric, Reed & Kerschen 2002; Saric, Reed & White 2003), but not
as a controlling agent.

It is plausible that a large enough transpiration may lead to a major re-alignment
of the flow. Since large transpiration implies large cost, it is interesting to identify
the smallest possible transpiration that is able to transform the flow in a permanent
manner, i.e. it is capable of pushing the flow through a stability limit. This goal
can be achieved by focusing the search on the spatial distributions rather than on
the amplitudes of the transpiration. Such a strategy is likely to succeed as weak
transpiration represents a tool for creation of perturbations in Couette flow; this
flow is very sensitive to the presence of perturbations as discussed above. Apart
from the flow control applications, the effects of transpiration are of interest from
the fundamental point of view in the area of analysis of variations of spectra as a
function of mean flow perturbations.

Since ideal Couette flow is linearly stable (Romanov 1972), there are no guidelines
regarding values of Re that could offer opportunities for generation of instabilities
on the linear level. This investigation considers therefore a wide range of Re, from
Re= O(1) to Re= O(105). In order to make the analysis tractable, attention is focused
on disturbances in the form of streamwise vortices only. The potential appearance of
travelling wave instability is not considered.

The appearance of streamwise vortices in flows with streamwise periodic modulation
has been identified on a number of occasions. In the case of Langmuir circulation,
the spatial modulation is created by a wavy interface via Stokes drift (Craik 1982;
Leibovich 1977). The resulting vortices are attributed to the action of a centrifugal
effect and the corresponding mechanism is referred to as the CL2 mechanism
(Leibovich 1983). The CL1 mechanism, related to bending of the vortex sheets
(Craik & Lebovich 1976), can be a contributing factor. The second example involves
spatial modulation induced by a wavy wall. Tokuda (1972) postulated that this flow
might be subject to the centrifugal-force-driven instability, giving rise to streamwise
vortices. Similar vortices can be created by the CL2 mechanism, which can also
operate in a non-centrifugal regime (Phillips & Wu 1994; Phillips, Wu & Lumley
1996). The necessary conditions for the latter instability are expressed in terms of
the Craik–Phillips–Shen criterion (Phillips 1998). Saric & Benmalik (1991) analysed
boundary layers over a wavy surface and concluded that the centrifugal mechanism
was not important for their flow conditions. Floryan (2002) considered a formal linear
stability analysis of Couette flow in the same geometry and identified conditions
necessary for the generation of the vortices. The final example involves spatial flow
modulation induced by Tollmien–Schlichting waves. Such waves may, under certain
conditions, generate a secondary flow in the form of streamwise vortices, as postulated
by Görtler & Witting (1958); this process is referred to as the secondary instability
and the vortices are at present attributed to parametric resonance (Orszag & Patera
1983).

The examples discussed above exhibit differences in the sense that mean flow
modulations are driven by different primary mechanisms. At the same time, these
examples exhibit generic similarities in the sense that streamwise flow periodicity leads
to the formation of streamwise vortices. Each case involves different distributions of
the mean flow shear and streamline curvature and thus predictions regarding the
formation of the vortices widely vary, if available at all. The mechanisms that may
contribute to the creation of the vortices include centrifugal forces, the CL1 and
CL2 mechanisms, and parametric resonance. The present study considers another
source of flow modulation, i.e. wall transpiration, and the resulting combination of



Wall-transpiration-induced instabilities in Couette flow 155

the mean flow shear and streamline geometry is unlike the ones studied before and
thus warrants a separate investigation. It is argued that the vortices considered here
are driven by the centrifugal effect with the other mechanisms, which cannot be in
general excluded, playing a complementary role.

The characterization of the centrifugal force field created by wall transpiration is
difficult as this field is a function of the spatial distribution of the transpiration.
The character of the force field may change between destabilizing and stabilizing
for various segments of the flow field. The critical conditions for the occurrence of
the instability, which must include characterization of the spatial distribution of the
transpiration, are sought. The distribution of transpiration that could potentially lead
to the instability does not need to be unique. In the present study, this distribution
is represented in terms of Fourier expansions. Detailed results are presented for
distributions described by a single Fourier mode, which can be characterized by two
parameters, i.e. the amplitude and the wavelength of the transpiration. It is expected
that the flow may become unstable for various combinations of these two parameters
with the value of the critical Reynolds number being different in each case. The global
critical Reynolds number, where the flow does not become unstable with respect to
streamwise vortices for the specified amplitude of the transpiration regardless of its
wavelength, is also sought.

This paper is organized as follows. Section 2 gives description of plane Couette
flow modified by wall transpiration. Section 3 discusses linear stability of this flow.
Section 4 is a discussion of the results. Section 5 gives a short summary of the main
conclusions.

2. Couette flow with suction
2.1. Problem formulation

This section describes modifications of the plane Couette flow induced by application
of wall transpiration.

Consider plane Couette flow confined between flat rigid walls at y = ±1 and
extending to ±∞ in the x-direction. The velocity and pressure fields have the form

v0(x, y) = [u0(y), 0] = [(y + 1)/2, 0], p0(x, y) = const, (2.1)

where the fluid motion is directed towards the positive x-axis. The motion of the
upper wall drives the flow while the lower wall is stationary. The relevant Reynolds
number Re is based on the velocity of the upper wall and the half-channel height.

At the lower wall transpiration is applied, leading to boundary conditions in the
form

u(x, −1) = 0, v(x, −1) = vL(x), (2.2a, b)

u(x, 1) = 0, v(x, 1) = 0, (2.2c, d)

where the subscript L refers to the lower wall. We shall restrict the analysis to
transpiration that is periodic in x with the wavelength λx = 2π/α. The transpiration
distribution can be expressed in terms of Fourier series in the form

vL(x) =

n=∞∑
n=−∞

Vne
inαx, (2.3)

where Vn = V ∗
n in order for vL to be real. Here, an asterisk denotes complex conjugate.

We shall assume that V0 = 0, i.e. the transpiration on average carries zero mass flux.
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The velocity and pressure fields can be represented as

v(x, y) = [u0(y), 0] + [u1(x, y), v1(x, y)], p(x, y) = const + p1(x, y), (2.4)

where u1, v1 and p1 are the velocity and pressure modifications due to the presence of
wall transpiration. Substitution of the above representation of the flow quantities into
the Navier–Stokes and continuity equations, introduction of stream function defined
as

u1 = ∂yΨ, v1 = −∂xΨ (2.5)

and elimination of pressure permits the field equations to be expressed in the form

(u0∂x + ∂yΨ ∂x − ∂xΨ ∂y)∇Ψ =
1

Re
∇2Ψ, (2.6)

where ∇ denotes Laplace operator, ∂ denotes partial differentiation, and subscripts x

and y denote the arguments of partial differentiations.
Since u1 and v1 are periodic in x with period λx = 2π/α, the stream function can

be represented as

Ψ (x, y) =

n=+∞∑
n=−∞

Φn(y)einαx, (2.7)

where Φn = Φ∗
−n. Substitution of (2.7) into (2.6) and separation of Fourier components

leads to the following equation for Φn, n � 0:

[
D2

n − inαReu0Dn

]
Φn − iαRe

k=+∞∑
k=−∞

[kDΦn−kDkΦk − (n − k)Φn−kDkDΦk] = 0, (2.8)

where Dn = D2 − n2α2 and D= d/dy. The relevant boundary conditions have the
form

DΦn(−1) = DΦn(1) = 0, n � 0,

Φn(−1) = iVn/nα, Φn(1) = 0, n � 1.

}
(2.9a)

It is assumed that presence of wall transpiration does not affect the mass flux through
the channel, which leads to additional conditions in the form (Floryan 1997)

Φ0(−1) = 0, Φ0(1) = 0 (2.9b)

that are required to close problem formulation. The first condition in (2.9b) has been
selected arbitrarily without loss of generality.

The pressure field associated with flow modifications can be expressed as

∂p1

∂x
=

n=∞∑
n=−∞

Pn(y)einαx. (2.10a)

The change in the mean streamwise pressure gradient induced by the transpiration
can be evaluated as (Floryan 1997)

P0 =
1

2Re

(
d2Φ0

dy2

∣∣∣∣
y=1

− d2Φ0

dy2

∣∣∣∣
y=−1

)
. (2.10b)

The energy En of the nth mode is defined as

E0 =
1

4

∫ 1

−1

|v̄0n|2dy, En =
1

2

∫ 1

−1

|v̄1n|2 dy, n �= 0 (2.11)

where v̄1n stands for the velocity vector corresponding to the nth term in (2.7).
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2.2. The numerical solution

The problem to be solved consists of an infinite system of nonlinear ordinary differ-
ential equations (2.8) subject to boundary conditions (2.9). This section briefly de-
scribes the solution procedure.

As a first step, the representation of the stream function of the flow modifications
Ψ is truncated to the M leading Fourier modes, i.e.

Ψ (x, y) ≈
n=M∑

n=−M

Φn(y)einαx. (2.12)

The corresponding finite-dimensional system of ordinary differential equations for
the functions Φn, n = 0, 1, . . . , M , can be easily written on the basis of equations
(2.10). This system can be discretized by introducing Chebyshev representations of
the unknown function Φn in the form

Φn(y) =

j=∞∑
j=0

Gn
jTj (y) ≈

j=K∑
j=0

Gn
jTj (y), (2.13)

where Tj denotes the Chebyshev polynomial of the j th order, Gn
j stands for the

unknown expansion coefficient and the expansions are limited to the first K + 1
polynomials for calculation purposes. The Chebyshev representations of the required
derivatives DmΦ (with m up to 4) can be determined using a recursive algorithm
described by Canuto et al. (1988).

The nth equation of our system can be written in the general form

Ξn(Φ0, Φ1, . . . , ΦM ) = 0 for n = 0, . . . , M. (2.14)

The substitution of the Chebyshev expansions (2.13) and their derivatives into (2.14)
gives the residual function

Rn = Ξn

(
j=K∑
j=0

G0
jTj ,

j=K∑
j=0

G1
jTj , . . . ,

j=K∑
j=0

GM
j Tj

)
, n = 0, . . . , M. (2.15)

The problem is converted to an algebraic, nonlinear system by imposing the ortho-
gonality conditions

〈Rn, Tj 〉ω = 0, j = 0, . . . , K − 4, n = 0, . . . , M. (2.16)

where the inner product is defined as

〈f, g〉ω :=

∫ 1

−1

f (y)g(y)ω(y) dy, ω(y) = (1 − y2)−1/2.

The discretization method described above can be viewed as a variant of the
Chebyshev–tau technique. The reader should note that the projection is carried out
onto the linear subspace spanned by the Chebyshev polynomials with the order of
up to K − 4. The additional equations required to close the system are due to flow
boundary conditions (2.9a) and volume flux conditions (2.9b). The results were spot-
checked using the method described by Floryan (1997), which had been programmed
separately. Appropriate selection of the discretization parameters as well as the overall
accuracy of the numerical solution will be discussed in § 3.2.
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Figure 1. Modifications of Couette flow induced by the presence of wall transpiration as a
function of the Reynolds number Re for transpiration wavenumber α = 1.0 obtained with the
linear model (§ 2.4). Hats denote quantities normalized with the amplitude of transpiration S
resulting in v̂1 = 1 at y = −1.

2.3. Linear model

The linear model plays an important role, as will be established in § 4, and so it
warrants a separate discussion. For small suction amplitude, the nonlinear coupling
between different modes in (2.7) becomes negligible. Under such circumstances, it is
sufficient to consider wall suction in the form of a single Fourier harmonic, which
leads to the following boundary value problem:

{(D2 − α2)2 − iαReu0(D
2 − α2}Φ1 = 0, (2.17a)

Φ1(−1) = iSα−1, DΦ1|y=−1 = Φ1(1) = DΦ1|y=1 = 0, (2.17b)

where S = V1. Special solutions of the above problem are described in Appendix A.
Figures 1 and 2 illustrate velocity fields (normalized with factor S) for typical cases
of interest. Results shown in figure 1 demonstrate that the character of the flow field
modifications changes weakly as a function of the Reynolds number Re. Results shown
in figure 2 demonstrate their rapid evolution as a function of the wavenumber α.
The qualitative differences are underscored well in this case by the analytical forms
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Figure 2. Modifications of Couette flow induced by the presence of wall transpiration as a
function of the transpiration wavenumber α for Re = 5000. Other conditions as in figure 1.

of the solution in the limits of α → 0 and α → ∞ described in Appendix A. Limits
of the applicability of the linear model can be judged on the basis of the results
shown in figure 3. This figure displays variations of energies En of the first three
modes as a function of the transpiration amplitude S. The energies were computed
using the complete nonlinear model (2.8) truncated at M = 7. It can be seen that
the nonlinear effects are negligible for approximately S � 10−2. When the Reynolds
number decreases, the magnitude of the transpiration amplitude for which the linear
model is acceptable increases slightly. Additional comments regarding the applicability
of the linear model are given in § 3.2.

3. Stability analysis
This section describes the linear stability analysis of Couette flow modified by wall

transpiration using methodology developed by Floryan (1997).
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Figure 3. Energy En of the first three modes (see (2.11)) associated with the modifications
of Couette flow induced by the wall transpiration in the form of a single Fourier mode with
wavenumber α = 1 for Re = 5000 as a function of the transpiration amplitude S.

3.1. Problem formulation

The analysis begins with the governing equations in the form of vorticity transport
and continuity equations in the form

∂ω

∂t
− (ω · ∇)v + (v · ∇)ω =

1

Re
∇2ω, ∇ · v = 0, ω = ∇ × v. (3.1a, b, c)

Unsteady three-dimensional disturbances are superimposed on the mean part in the
form

ω = ω2(x, y) + ω3(x, y, z, t), v = v2(x, y) + v3(x, y, z, t), (3.2)

where subscripts 2 and 3 refer to the mean flow and the disturbance field, respectively.
The assumed form of the flow, (3.2), is substituted into (3.1), the mean part is
subtracted and the equations are linearized. The resulting linear disturbance equations
have the form

∂ω3

∂t
+ (v2 · ∇)ω3 − (ω3 · ∇)v2 + (v3 · ∇)ω2 − (ω2 · ∇)v3 =

1

Re
∇2ω3, (3.3a)

∇ · v3 = 0, ω3 = ∇ × v3. (3.3b, c)

The mean flow is assumed to have the form

v2(x, y) = [u0(y), 0, 0] +

n=∞∑
n=−∞

[
f (n)

u (y), f (n)
v (y), 0

]
einαx (3.4)

where f (n)
u , f (n)

v represent the solution to the problem (2.6)–(2.10) and f (n)
u =

(f (−n)
u )∗, f (n)

v = (f (−n)
v )∗.

The disturbance equations (3.3) have coefficients that are functions of x and y only
and thus the solution can be written in the form

v3(x, y, z, t) = h3(x, y)ei(µz−σ t) + c.c. (3.5)
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where h3 = (hu, hv, hw). The exponent µ is real and accounts for the spanwise
periodicity of the disturbance field. The exponent σ is assumed to be complex
and its imaginary and real parts describe the rate of growth and the frequency of the
disturbances, respectively.

The coefficients in (3.3) are periodic in x with periodicity 2π/α and thus, in general,
h3 should be written as

h3(x, y) = eiδx g3(x, y) = eiδx

m=+∞∑
m=−∞

G(m)(y)eimαx, (3.6)

where g3 is periodic in x with the same periodicity 2π/α and δ is referred to as
the Floquet exponent (Coddington & Levinson 1965). In the case of centrifugal
instability, disturbances are expected to be in the form of streamwise vortices and
thus the solution must include the non-periodic component. As a result, the Floquet
exponent can be assumed to be zero without loss of generality. Nevertheless, this
exponent is kept in the formulation and it is used to test the consistency and accuracy
of the numerical solution. The final form of the disturbance velocity vector is written
as

v3(x, y, z, t) =

m=+∞∑
m=−∞

[
g(m)

u (y), g(m)
v (y), g(m)

w (y)
]
ei[(δ+mα)x+µz−σ t] + c.c. (3.7)

Substitution of (3.4) and (3.7) into the disturbance equations (3.4) and separation of
Fourier components results in a system of ordinary differential equations governing
g(m)

u , g(m)
v , g(m)

w in the form

S(m)
(
tmg(m)

w − µg(m)
u

)
+ Cg(m)

v = iRe

n=∞∑
n=−∞

(
W (m,n)

u g(m−n)
u + W (m,n)

v g(m−n)
v + W (m,n)

w g(m−n)
w

)
,

(3.8a)

T (m)g(m)
v = −Re

n=∞∑
n=−∞

(
B (m,n)

u g(m−n)
u + B (m,n)

v g(m−n)
v + B (m,n)

w g(m−n)
w

)
, (3.8b)

itmg(m)
u + Dg(m)

v + iµg(m)
w = 0, (3.8c)

where D= d/dy, tm =mα + δ and the explicit forms of the operators T , S, C, W, B

are given in the Appendix B. Equation (3.8a) describes the y-component of the
disturbance vorticity, (3.8b) corresponds to iµ × (3.4a)− itm × (3.4c), and (3.8c) results
from the continuity equation. It is convenient for analysis purposes to express the
above relations in terms of the y-components of disturbance vorticity θ (m) = tmg(m)

w −
µg(m)

u and disturbance velocity g(m)
v , i.e.

S(m)θ (m) + Cg(m)
v = Re

n=∞∑
n=−∞

(
E(m,n)

v g(m−n)
v + E

(m,n)
θ θ (m−n)

)
, (3.9a)

T (m)g(m)
v = −Re

n=∞∑
n=−∞

(
H (m,n)

v g(m−n)
v + H

(m,n)
θ θ (m−n)

)
, (3.9b)

where the explicit forms of the operators E, H are given in the Appendix B.
Effects of wall suction are contained in the terms on the right-hand side of (3.9).

In their absence, all modes in the Fourier series (3.6) decouple and (3.9) describes
the classical three-dimensional instability of ideal Couette flow. The coupling involves
2N +1 consecutive terms from the Fourier series, where N describes the actual length
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of the Fourier series in (3.4). In analogy to the stability of flow in a channel without
wall transpiration, we shall refer to the T , S and C operators as the Tollmien–
Schlichting, Squire and coupling operators, respectively. Operators E and H arise
because of flow forcing due to the presence of wall transpiration and thus we shall
refer to them as the forcing operators. Eθ and Hv describe direct forcing and Ev and
Hθ describe coupling due to the forcing.

Equations (3.9), together with homogeneous boundary conditions, have non-trivial
solutions only for certain combinations of parameters Vn, α, σ and µ. The required
dispersion relation has to be determined numerically. Since interest here is in the
temporal instability, the problem for numerical solution was posed as an eigenvalue
problem for σ .

3.2. Numerical solution

The problem to be solved consists of an infinite system of ordinary differential
equations (3.9) with homogeneous boundary conditions. Approximate solutions can
be found by truncating the sum in (3.7) after a finite number L of terms and solving
the eigenvalue problem for 2L+1 differential equations of type (3.9). All calculations
reported in this paper have been carried out for the wall transpiration in the form of
a single Fourier mode with V1 = S, Vn = 0 for n �= 1 (see (2.3)).

The differential equations were discretized using a method similar to the one
described in § 2.3. An alternative discretization method described by Floryan (1997)
was also implemented and was used to spot-check the results.

The discretization procedure results in a matrix eigenvalue problem Ωx = 0 where
Ω(σ ) represents the coefficient matrix. This matrix is linear in σ , i.e. Ω = Ω0 + Ω1σ ,
where Ω0 =Ω(0), Ω1 = Ω(1) − Ω0. The σ -spectrum is determined by solving a
general eigenvalue problem in the form Ω0x = σΩ1x. The individual eigenvalues
are determined by finding zeros of the determinant of Ω .

Two methods for tracing of eigenvalues in the parameter space have been used.
In the first method, one alters flow conditions and produces an approximation
for the eigenvalue, which is then improved iteratively by searching for the nearby
zero of the determinant using a Newton–Raphson search procedure. In the second,
the inverse iterations method, one computes an approximation for the eigenvector
Λa corresponding to the unknown eigenvalue σa using an iterative process in the
form (Ω0 − σ0Ω1)Λ

(n+1) = Ω1Λ
(n) where σ0 and Λ(0) are the eigenvalue and the

eigenvector (an eigenpair) corresponding to the unaltered flow. If σa is the eigenvalue
closest to σ0, Λ

(n) converges to Λa . The eigenvalue σa is evaluated using formula
σa = Λ∗

aΩ0Λa/Λ
∗
aΩ1Λa where the asterisk denotes the complex-conjugate transpose.

The inverse iterations method was found to be generally more efficient.
Results of numerical tests presented in tables 1–4 dealing with numerical evaluation

of eigenvalue σ assist in identifying the correct settings of various numerical
parameters. These tests deal with the flow conditions around the onset of the
instability. Tables 1 and 2 shows that in the case of a medium Reynolds number
of Re = 5000 eigenvalues can be determined with accuracy no worse then 1% using
K =39 Chebyshev polynomials, M =1 Fourier modes to represent the base flow
and L =1 Fourier modes to represent the disturbances. This demonstrates that
the linear model of flow modifications discussed in § 2.3 is relevant for such flow
conditions. Results displayed in tables 3 and 4 for small Reynolds number Re =182
demonstrate that one needs to use M =3 Fourier modes to represent base flow,
L =3 Fourier modes to represent disturbances and K = 39 Chebyshev polynomials
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M – number of Fourier modes
L – number of Fourier Number of base flow used in the base flow solution
modes used to represent Fourier modes retained in

disturbances the stability equations 1 2 3

1 1 1.266942 1.267717 1.267049

2 1 1.257439 1.257659 1.257542
2 1.257682 1.257564

3 1 1.257442 1.257662 1.257545
2 1.257693 1.257575
3 1.257570

Table 1. Disturbance amplification rate Im(σ ) × 103 for the transpiration amplitude S =
0.0015, the transpiration wavenumber α = 1, the flow Reynolds number Re = 5 × 103 and the
vortex wavenumber µ = 1 obtained using K = 59 Chebyshev polynomials.

Number of Chebyshev polynomials 39 49 59

Im(σ ) × 103 1.257570 1.257570 1.257570

Table 2. Disturbance amplification rate Im(σ ) for the transpiration amplitude S = 0.0015, the
transpiration wavenumber α = 1, the flow Reynolds number Re = 5 × 103 and the vortex
wavenumber µ = 1 obtained using M = L = 3 Fourier modes to represent the base flow and
the disturbance field.

M – number of Fourier modes
L – number of Fourier Number of base flow used in the base flow solution

used to represent Fourier modes retained in

disturbances the stability equations 3 5 7

3 3 0.312755 0.320822 0.320846

5 3 0.315098 0.322809 0.322833
5 0.322532 0.322599

7 3 0.315170 0.322878 0.322901
5 0.322600 0.322667
7 0.322657

Table 3. Disturbance amplification rate Im(σ ) × 103 for the transpiration amplitude S = 0.05,
the transpiration wavenumber α = 1.1, the flow Reynolds number Re = 182 and the vortex
wavenumber µ = 1.75 obtained using K = 59 Chebyshev polynomials.

Number of Chebyshev polynomials 39 49 59

Im(σ ) × 103 0.322657 0.322657 0.322657

Table 4. Disturbance amplification rate Im(σ ) for the suction amplitude S = 0.05, the suction
wavenumber α = 1.1, the flow Reynolds number Re= 182 and the vortex wavenumber µ= 1.75
obtained using M = L = 7 Fourier modes to represent the base flow and the disturbance field.

to get the same accuracy of 1%. The higher accuracy requirements in this case result
primarily from the fact that the instability occurs at higher values of the transpiration
amplitude.
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Note that in the case of disturbances in the form of streamwise vortices, the
x- and y-components of G(m) in (3.6) are real, the z-component is imaginary, i.e.
g(m)

u = g(−m)∗

u , g(m)
v = g(−m)∗

v , g(m)
w = −g(−m)∗

w , the exponent σ is imaginary, and the size
of the system to be solved numerically can be decreased by the ratio (2M +1)/(M +1).
This is equivalent to the formulation of the stability problem in terms of real rather
than complex variables. In this work a general problem has been solved numerically
and special properties of the solution have been used for verification of the consistency
of the results. The availability of Floquet exponent δ has also been used for numerical
verification of certain properties of the solution. All theoretically expected properties
have been reproduced numerically.

4. Discussion of results
The following discussion is focused on the temporal stability theory, i.e. the exponent

σ is complex and its imaginary part describes the rate of growth of disturbances. All
results deal with plane Couette flow modified by transpiration in the form of a single
Fourier mode. The transpiration is applied at the bottom wall only, its amplitude
S is assumed to be real and the resulting normal velocity distribution has the form
vL(x) = 2S cos(αx).

Ideal Couette flow is linearly stable (Romanov 1972). Results of this analysis show
that the presence of wall transpiration leads to the appearance of growing disturbances
at finite Reynolds numbers. This particular study is focused on disturbances in the
form of streamwise vortices and thus the dominant mode corresponds to m = 0
in (3.7). The vortices are modulated in the streamwise direction with the same
periodicity as that of the transpiration, i.e. the wavelength of the modulations is
2π/α. The stability analysis is linear and permits determination of critical conditions
only. The flow evolution past the critical conditions requires a fully nonlinear analysis,
as the presence of vortices produces large changes in the mean flow (Benmalek &
Saric 1994).

4.1. Instability in the case of medium Reynolds numbers

It is useful to begin this discussion with a description of the form of the base flow.
Figure 4(a) illustrates the form of streamlines for Re = 5000, α = 1, S = 0.0015. Wall
transpiration produces bubbles containing fluid transferred through the wall. These
bubbles displace the fluid already in the channel, forcing it to change direction in
order to flow around them. The distribution of the resulting streamline curvature,
which can be evaluated according to the formula

K =

(
u2

1

∂v1

∂x
− v2

1

∂u1

∂y
− 2v1u1

∂u1

∂x

)/(
v2

1 + u2
1

)3/2
, (4.1)

is illustrated in figure 4(b). The curvature is negative over approximately the first
half of the period in the x-direction, and positive over the second half. Potential for
instability driven by centrifugal effect is expressed in terms of the Rayleigh criterion
(Rayleigh 1916; Drazin & Reid 1981) that states that a necessary and sufficient
condition for stability is that the square of the circulation should not decrease
anywhere. This criterion had been derived in the case of flow between circular
cylinders using a polar system of coordinates where the positive direction is uniquely
defined. In the present case the flow is described in terms of a Cartesian system
and thus the positive direction corresponds to increasing y in the area where the
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Figure 4. Form of base flow resulting from the presence of transpiration with wavenumber
α = 1 and amplitude S = 0.0015 for Re = 5000 and x ∈ (0, 4π/α): (a–d) display streamline
pattern, streamline curvature, circulation and vorticity, respectively.
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Figure 5. Amplification rate Im(σ ) of disturbances in the form of streamwise vortices induced
by wall transpiration in the form of a single Fourier mode with amplitude S = 0.0015 for
Re = 5000 as a function of the vortex wavenumber µ and the transpiration wavenumber α.

curvature is negative, and decreasing y in the area where the curvature is positive.
The circulation can be evaluated according to the formula

Γ = (|v|/K) =
(
v2

1 + u2
1

)2

/ (
u2

1

∂v1

∂x
− v2

1

∂u1

∂y
− 2v1u1

∂u1

∂x

)
(4.2)

and its distribution is illustrated in figure 4(c). It can be seen that the flow violates
the Rayleigh criterion in the zone corresponding approximately to the second half of
the flow period in the x-direction. Figure 4(d) illustrates the distribution of vorticity
in the base flow. It can be seen that the transpiration acts as a source of vorticity at
the lower as well as upper walls. The presence of such a vorticity source may lead to
interesting dynamics of turbulent Couette flow.

Results of the full linear stability analysis are illustrated in figure 5, which displays
the amplification rate Im(σ ) of the vortices as a function of the transpiration wave-
number α for the flow Reynolds number Re = 5000 and the transpiration amplitude
S = 0.0015. It can be seen that there is a finite range of transpiration wavenumbers α,
bounded from above and from below, that gives rise to the instability. Each (unstable)
transpiration wavenumber gives rise to growth of a continuous, finite band of vortices
whose spanwise wavenumber µ is also bounded from above and from below. The
neutral curve, which delineates the range of unstable (α, µ), is marked using a thicker
line.

The occurrence of the instability identified above leads to a rapid three-
dimensionalization of the flow field through the formation of streamwise streaks.
It is known that such streaks play an important role in the transition process (Reddy
et al. 1998; Waleffe 1997). Numerical simulations carried out by Floryan, Yamamoto
& Murase (1992) show that a similar instability represents the initial stages of the
bypass route to transition in the case of Poiseuille flow modified by suction. Qualitative
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similarities between both instabilities suggest that surface transpiration may initiate
a process leading to transition in the case of Couette flow also.

Figure 6 illustrates the form of the first three eigenfunctions associated with the
vortices for µ = 1, α = 1, S = 0.015 and Re = 5000. The dominant character of g(0)

u ,
which is a characteristic feature of the vortices, is clearly visible. The topology of the
vortices is rather complex, as indicated by the form of the velocity ‘amplitude function’
h3(x, y) displayed in figure 7. This complexity is associated with the streamwise
modulation of the vortex. The disturbance velocity field topology is illustrated well
by plots of transverse velocity vector in the (y, z)-plane displayed in figure 8. One
pair of counter-rotating vortices can be seen at x = 0 (figure 8a). A second layer of
vortices can be seen forming at the bottom of the channel at x = λ/8 (figure 8b). Here
λ denotes the wavelength of the transpiration. This second layer is well-developed at
x = λ/4 (figure 8c). The lower vortices are replaced at x = 3λ/8 by a one-dimensional
jet-like structure directing the fluid away from z = π/µ (figure 8d). There is no
vortex structure at all in the whole channel at x = λ/2 (figure 8e); it is replaced by
one-dimensional flow in the same direction as at x = 3λ/8 with a distinct jet-like
structure clearly visible at the bottom of the channel. Vortex structure in the centre
of the channel re-emerges at x = 5λ/8 and it is accompanied by the same jet-like
structure around the lower wall (figure 8f ). A single layer of counter-rotating vortices
is visible at x = 3λ/4 (figure 8g) with the jet-like structure at the bottom flowing
in the opposite direction compared to x = 5λ/8. The formation of a more regular
system of two counter-rotating vortices can be seen at x = 7λ/8 (figure 8h).

Flow patterns shown in figure 8(d–g) suggest the existence of apparent sinks and
sources around the bottom of the channel at z = 0, π/µ and 2π/µ. This effect is
associated with the streamwise modulation of the vortices and can explained by
looking at the form of eigenfunctions displayed in figure 6. It can be seen that higher
Fourier modes play a significant role near the bottom of the channel, especially for
the y and z disturbance velocity components. The ‘sink/source’ effect is associated
with the higher Fourier modes whose presence results in the local increase/decrease
of the u velocity at different x-locations.

Figure 9 illustrates changes of the vortex amplification rate as a function of the
amplitude S of the transpiration for a few selected vortices in the limit as S → 0. The
distinct limit S = 0 corresponds to Squire’s mode and can be determined analytically,
i.e. σ = −i(µ2 + π2/4)/Re (Floryan 2002). The available results demonstrate that
the part of the spectrum describing vortices is connected to Squire’s spectrum in the
absence of transpiration. The evolution of the g(0)

u eigenfunction with amplitude S is
shown in figure 10 for α = 1, µ = 1, Re = 5000. The reader may note that disturbances
have no streamwise vorticity when S = 0. Such vorticity may be viewed as being
created by ‘bending’ of the plane vortex sheets by wall transpiration (figure 4a).

Figures 11, 12 and 13 display the eigenfuntions, the amplitude function h3(x, y)
and the transverse velocity fields, respectively, for S = 0.0001 and for the same values
of α, µ and Re. These results permit analysis of transition of the disturbance velocity
field from that corresponding to a stable vortex to an unstable one (figures 6, 7, 8).
The shape of the eigenfunctions is similar for S = 0.0015 and S = 0.0001, with the
higher modes being significantly smaller in the latter case. There are no vortices in
a significant streamwise section of the channel, as shown in figure 12. The process
of creation and elimination of vortices can be easily followed in figure 13. One pair
of vortices can be seen in the upper section of the channel at x = 0 (figure 13a),
while the lower two-thirds is occupied by the jet-like structure. A second layer of
the vortices appears at x = λ/8 (figure 13b) while a very thin jet-like structure still
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Figure 6. Eigenfunctions g
(m)
u , g(m)

v , g(m)
w ,m= 0, 1, 2, describing a vortex with wavenumber

µ= 1 induced by the wall transpiration with wavenumber α = 1 and amplitude S = 0.0015

for the flow Reynolds number Re =5000 and normalized with condition max(g(0)
u ) = 1.

(a–c) Functions g
(m)
u , g(m)

v , g(m)
w , respectively.
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Figure 7. Velocity ‘amplitude function’ h3(x, y) = [hu(x, y), hv(x, y), iĥw(x, y)] (see (3.5)) for

Re =5000, α = 1, µ= 1, S = 0.0015 normalized with condition max(g(0)
u ) = 1. Functions hu, hv,

ĥw are displayed in (a–c), respectively.

exists at the bottom. The second layer grows and occupies most of the channel at
x = λ/4 (figure 13c) while the first layer disappears altogether; the jet-like structure
at the bottom begins to grow. This jet-like structure eliminates vortices and fills
the whole channel at x = 3λ/8, x = λ/2 and x = 5λ/8 (figure. 13d–f ). One may
note the appearance of another jet-like structure flowing in the opposite direction
at the bottom at x = 5λ/8 (figure 13f ). Vortices re-appear at x = 3λ/4 (figure 13g)
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Figure 8. Distribution of the (y, z) component of the disturbance velocity vector for
z ∈ (0, 2π/µ), µ= 1, α = 1,Re= 5000, S =0.0015. The disturbance velocity vector is normalized
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respectively, where λ = 2π/α denotes one wavelength of wall transpiration.
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Figure 11. Eigenfunctions g
(m)
u , g(m)

v , g(m)
w , m= 0, 1, 2, describing a vortex with wavenumber

µ = 1 induced by wall transpiration with amplitude S = 0.0001. The remaining conditions are

the same as those used in figure 6. (a–c) Functions g
(m)
u , g(m)

v , g(m)
w , respectively.
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Figure 12. Velocity amplitude function h3(x, y) = [hu(x, y), hv(x, y), iĥw(x, y)] (see (3.5)) for
S = 0.0001. The remaining conditions are the same as those used in figure 7. Functions

hu, hv, ĥw are displayed in (a–c), respectively.

and fill the channel completely at x = 7λ/8 (figure 13h). One should note that the
cross-sections (g), (h), (a) correspond to the zone where the fluid exits from between
the ‘bubbles’ (streamlines begin to converge, i.e. figure 4a) and the centrifugal forces
create vortices. The cross-sections (d), (e), (f ) correspond to the zone where the fluid
enters the area between the ‘bubbles’ (streamlines diverge, i.e. figure 4a). There is some
vortex re-arrangement at the cross-sections (b) and (c). Comparison of the stable and
unstable disturbance flow patterns displayed in figures 13 and 8, respectively, does
not permit identification of any characteristic element that would mark the transition
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Figure 13. Distribution of the (y, z) component of the disturbance velocity vector for
S = 0.0001. The remaining conditions are the same as those used in figure 8. (a–h) Correspond
to x = 0, λ/8, λ/4, 3λ/8, λ/2, 5λ/8, 3λ/4, 7λ/8, respectively, where λ= 2π/α denotes one wave-
length of wall transpiration.



Wall-transpiration-induced instabilities in Couette flow 175

10

1

0.1

0.01

α

0.01 0.1 1 10

0.65 0.75
1

1.5
2

2.5

µ

S ×103 =3

Figure 14. The neutral surface describing instability of Couette flow induced by wall trans-
piration in the form of a single Fourier mode as a function of the transpiration amplitude S,
the transpiration wavenumber α and the vortex wavenumber µ for Re = 5000.

from stability to instability. It is the overall interplay between the destabilizing and
stabilizing segments of the centrifugal force field, as well as viscous dissipation, that
determine the flow response. Clearly, when the destabilizing segment of the centrifugal
force field is strong enough, it is able to create vortices that can survive in most of
the channel, and the flow becomes unstable.

Figure 14 displays the neutral stability surface as a function of the transpiration
amplitude S, the transpiration wavenumber α and the vortex wavenumber µ for
Re = 5000. The interior of this surface corresponds to the unstable flow conditions.
It can be seen that the instability does not occur unless the amplitude S reaches a
critical value defined by the tip of the neutral surface. The shape of the neutral surface
shows that the range of active wavenumbers α, as well as the range of the resulting
vortex wavenumbers µ, increases rapidly with an increase of S. Here we use the
term ‘active wavenumber’ to denote transpiration wavenumber that can produce
instability. Wavenumbers as high as α = 7 and as low as α = 0.05 can become active
for S = 0.003. A similar surface obtained in the case of Re = 10 000 is displayed
in figure 15. It can be seen that destabilization as a function of S is more rapid;
wavenumbers as high as α = 10 and as low as α = 0.01 can produce instability by
S = 0.002.

Since it is known that the presence of vortices is a strong harbinger of transition
to turbulence (Reddy et al. 1998; Waleffe 1997), it is interesting to determine the
characteristics of the transpiration as well as the critical flow conditions that may
lead to the onset of the instability. Transpiration considered here is completely defined
in terms of its amplitude and wavenumber and the critical Reynolds number defining
the onset of the instability has to be found for every combination of these parameters.
A cut corresponding to α = const through the neutral surface shown in figure 14
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determines the amplitude S for which Re = 5000 represents the critical value for this
particular α. A similar cut through the neutral surface shown in figure 15 determines
critical S for Re = 10 000.

It is conceptually simpler to discuss the instability by fixing the form of the
transpiration and studying the effect of the flow conditions, i.e. Re. Figure 16 displays
the neutral surface obtained for a fixed value of S = 0.0015 with α, µ and Re being
parameters. A strong role of Re in the destabilization process is clearly visible. A
cut corresponding to α =const determines the critical Re for this particular α and
S. It is convenient for presentation of the results to introduce the global critical
Reynolds number Reg,cr that defines the critical conditions for the given amplitude
of the transpiration regardless of its wavenumber. Such global critical conditions,
which include the critical transpiration wavenumber αg,cr and the critical vortex
wavenumber µg,cr , correspond to the tip of the neutral surface shown in figure 16.
Variations of the global critical conditions as a function of S are shown in figure 17.
The area below the critical curve defines the range of the transpiration amplitudes
and the flow Reynolds numbers where flow instability never occurs regardless of the
transpiration wavenumber. Above this curve instability may occur, but only for a
well-defined range of α.

Experimental results on Couette flow do not provide accurate information about
the level of disturbances present. One may view flow modifications induced by wall
transpiration as representing as a certain class of disturbances. Since nonlinear effects
typically become active at about 1% disturbance level (i.e. S = 0.05), data presented
in figure 17 estimate the critical Reynolds number to be about Reg,cr ∼ 800, which
compares well with the experimental value of Re = 600–800 required for the natural
transition.
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Figure 16. The neutral surface describing instability of Couette flow induced by the wall
transpiration as a function of the flow Reynolds number Re, the transpiration wavenumber
α and the vortex wavenumber µ. The transpiration has the form of a single Fourier mode
with the amplitude S = 0.0015. The tip of this surface defines the global critical conditions
(Reg,cr , αg,cr , µg,cr ).

The critical curve Reg,cr (S) defines the threshold for the base flow modifications
required for the onset of the instability. The available results show that this
threshold decreases as Re−1.15 for large Re. Since these results were obtained with the
transpiration in the form of a single Fourier harmonic, different thresholds may exist
for other forms of transpiration. It should be stressed that instability will not occur
above the threshold unless the flow modifications have a specific form defined by the
critical wavenumber α.

Figure 17 also displays the critical curve in terms of the transpiration Reynolds
number Ret = SRe rather than the transpiration amplitude S. The threshold value of
Ret required for the instability varies as Re−0.15 for large values of Re.

The form of the critical curve suggests that there exists an absolute minimum for
the global critical Reynolds number below which the transpiration, regardless of its
amplitude, cannot destabilize the flow. It can be seen from magnification of the lower
end of the critical curve, shown in a linear scale in figure 18, that the instability does
occur if Re < 84. This defines the global threshold.

4.2. Instability in the case of low Reynolds numbers

The fact that the instability associated with the wall transpiration may occur for Re
significantly smaller then the transition Re observed in the absence of transpiration
(Tillmark & Alfredsson 1992; Daviaud et al. 1992) justifies a closer look at the
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low values of Re is displayed in figure 18.

disturbance motion at low Re near the onset. All results presented in this section have
been obtained with Re = 182. The reader may recall that the base flow modifications
are strongly nonlinear for these flow conditions and that an accurate representation of
the disturbance motion requires a significant number of Fourier modes, as illustrated
by the results presented in tables 3 and 4.

We begin the discussion with a description of the base flow. Streamline of this flow
as well as streamlines curvature and flow circulation are illustrated in figure 19 for
α = 1.1, S = 0.05. They are qualitatively similar to the flow at Re = 5000 shown in
figure 4, with all characteristic features being more pronounced. Bubbles containing
fluid transferred through the wall extend well into the interior of the channel, the
curvature of the streamlines is bigger, the gradient of the circulation is smaller and
the potentially unstable zone is more constrained. The last two facts combined with
the presence of strong viscous damping suggest the need for a strong transpiration in
order to produce the instability.

The neutral surface as a function of α, µ and Re for fixed S = 0.05 is shown in
figure 20. It can be seen that both the range of active transpiration wavenumbers α

and the range of the resulting vortex wavenumbers µ are very limited; the ‘window
of opportunity’ for creation of this instability is severely constrained.
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Figure 21 displays the form of the first three eigenfunctions associated with the
vortices for µ = 1.75, α = 1.1, S = 0.05 and Re = 182. The dominant character
of g(0)

u is retained but the role of the higher modes is more pronounced. The form
of the velocity amplitude function h3(x, y) (see (3.5)) displayed in figure 22 is quite
complex, with a large change in hu suggesting strong streamwise vortex modulation
effects. This expectation is confirmed by plots of transverse velocity vector in the
(y, z)-plane displayed in figure 23. We start with one pair of counter-rotating vortices
at x = 0 (figure 23a). A second, fairly large, layer of vortices can be seen forming at
the bottom of the channel at x = λ/8 (figure 23b). This second layer is well-developed
at x = λ/4 (figure 23c) and still exists at x = 3λ/8 (figure 23d) although the beginning
of the formation of the jet-like structure at the lower wall can be identified. There is
no sign of vortex structure at x = λ/2 and at x = 5λ/8 (figure 23e and figure 23f ).
Vortices re-emerge at x = 3λ/4 (figure 23g) and are well-established at x = 7λ/8
(figure 23h). The effects of streamwise vortex modulation, which give the appearance
of the existence of sinks and sources in figure 23e and figure 23f , and lead to
elimination and re-creation of vortices between figures 23(d) and 23(g), as well as
creation and elimination of the second layer of vortices between figures 23(a) and
23(e), are clearly visible.

Figure 24 illustrates variations of the vortex amplification rate as a function of
the transpiration amplitude S. Squire’s mode is recovered in the limit of S → 0, as
expected. The structure of the disturbance velocity field at very small values of S (not
shown) is qualitatively very similar to the structure discussed in the previous section
for Re = 5000 (figure 11), with the higher Fourier modes being relatively stronger.
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Figure 19. Form of base flow resulting from the presence of transpiration with wavenumber
α = 1.1 and amplitude S = 0.05 for Re =182 and x ∈ (0, 4π/α). (a–d) Streamline pattern,
streamline curvature, (4.1), and circulation, (4.2), respectively.

5. Summary
Linear stability of plane Couette flow modified by transpiration applied at the

lower wall has been considered. While the problem formulation considers arbitrary
distribution of transpiration, the explicit results are given in the case of transpiration in
the form of a single Fourier harmonic described uniquely in terms of the wavenumber
α and the amplitude S.
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Results of a stability analysis show that the introduction of transpiration can
destabilize the flow at finite Reynolds numbers. The instability manifests itself through
the generation of streamwise-vortex-like structures and is attributed to centrifugal
effects. The presence of transpiration produces bubbles of fluid transferred through
the wall that act as obstacles for the fluid flowing through the channel and force this
fluid to change direction. The resulting streamline curvature gives rise to centrifugal
forces that drive the instability. The resulting unstable motion can be described as
streamwise vortices modulated by streamwise variations of transpiration, resulting in
a complex topology of the disturbance velocity field. No other disturbances have been
considered and thus all conclusions apply only to streamwise vortices. In particular,
the possible occurrence of travelling wave instability has not been considered.

The instability occurs only if the flow Reynolds number Re and the transpiration
amplitude S are large enough. If these conditions are met, the instability occurs only
for a certain finite range of the transpiration wavenumber α and gives rise to a
certain finite range of streamwise vortex wavenumbers µ. Since a description of the
neutral stability surface requires four-dimensional space, one has to look at various
cross-sections of this surface. Results illustrating the magnitude of S required for the
onset of the instability, the range of ‘active’ α and the range of resulting µ for several
values of Re have been presented. The strength of the instability, as measured by the
amplification rate, increases with the increase of the transpiration amplitude S and
the flow Reynolds number Re. The range of the ‘active’ wavenumbers α and the range
of the resulting vortex wavenumbers µ also increase with the increase of S and Re.

The critical flow conditions expressed in terms of the critical Reynolds number
leading to the onset of the instability can be found for each combination of the
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w ,m = 0, 1, 2, describing a vortex with wavenumber

µ = 1.75 induced by wall transpiration with wavenumber α = 1.1 and amplitude S = 0.05

for the flow Reynolds number Re = 182 and normalized with condition max(g(0)
u ) = 1. (a–c)

Functions g
(m)
u , g(m)

v , g(m)
w , respectively.
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Figure 22. Velocity amplitude function h3(x, y) = [hu(x, y), hv(x, y), iĥw(x, y)] (see (3.5)) for

Re =182, α = 1.1, µ= 1.75, S = 0.05 normalized with condition max(g(0)
u ) = 1. (a–c) Functions

hu, hv, ĥw , respectively.

transpiration amplitude S and the transpiration wavenumber α. The global critical
conditions expressed in terms of the global critical Reynolds number leading to
the onset of the instability for the given transpiration amplitude S regardless of its
wavenumber α have been determined. These conditions determine the transpiration
threshold (minimum transpiration amplitude) required for the onset. This threshold
varies with flow Reynolds number as ∼Re−1.15 for large Re. The existence of a global
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Figure 23. Distribution of the (y, z) component of the disturbance velocity vector for z ∈
(0, 2π/µ), µ= 1.75, α = 1.1, Re =182, S = 0.05. The disturbance velocity vector is normalized

with condition max(g(0)
u ) = 1. (a–h) Correspond to x = 0, λ/8, λ/4, 3λ/8, λ/2, 5λ/8, 3λ/4, 7λ/8,

respectively, where λ= 2π/α denotes one wavelength of wall transpiration.

threshold, where the instability does not occur regardless of the magnitude of the
transpiration, has been demonstrated. The global threshold occurs at Re ≈ 84.

Flow modifications associated with wall transpiration can be viewed as a class
of natural flow disturbances. The global critical Reynolds number corresponding to
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a 1% level of such disturbances corresponds well to the experimentally determined
natural transition Reynolds number.
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Appendix A
The solution of problem (2.17) can be expressed in the limit α → 0, following the

method described by Floryan & Dallmann (1990), in the form

Φ1 = S

{
α−1 1

4
i(y3 − 3y + 2) +

Re

480
[−y6 + 3y2 − 2 + 3(−y5 + 2y3 − y)] + O(α)

}
.

When α → ∞, the solution takes the form

Φ1 = Se−ξ
{
α−1i(1 + ξ ) + α−3Re

[
1
8
ξ 2 + 1

24
ξ 3

]
+ 0(α−4)

}
where ξ = α(y + 1). When Re = 0, the solution has the form

Φ1 = A1 sinh(αy) + A2 cosh(αy) + A3 y sinh(αy) + A4 y cosh(αy)
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where the constants A1, A2, A3, A4 have the form

A1 =
iS

2
[−α−1 sinh−1(α) + cosh2(α) sinh−1(α)(α − sinh(α) cosh(α))−1],

A2 =
iS

2
[α−1 cosh−1(α) + sinh2(α) cosh−1(α)(α + sinh(α) cosh(α))−1],

A3 = − iS

2
sinh(α)(α + sinh(α) cosh(α))−1, A4 = − iS

2
cosh(α)(α − sinh(α) cosh(α))−1.

The solution in the inviscid limit has the form

Φ1 =
iS

2α

[
cosh(αy)

cosh(α)
− sinh(αy)

sinh(α)

]
.

The solution for large but finite Re can be expressed in terms of Airy’s functions
using techniques described by Drazin & Reid (1981).

Appendix B
The operators is equations (3.8) and (3.9) are given by

S(m) = D2 − k2
m − iRe(tmu0 − σ ), (B 1)

T (m) =
(
D2 − k2

m

)2 − iRe
[
(tmu0 − σ )

(
D2 − k2

m

)]
, (B 2)

C = ReµDu0, (B 3)

W (m,n)
u = µ

(
if (n)

v D − tmf (n)
u

)
, (B 4)

W (m,n)
v = iµDf (n)

u , (B 5)

W (m,n)
w = tm

(
tm−nf

(n)
u − if (n)

v D
)
, (B 6)

B (m,n)
u = −t2

mDf (n)
u + inαk2

mf (n)
v − t2

mf (n)
u D + itmDf (n)

u D + itmf (n)
v D2, (B 7)

B (m,n)
v = ik2

mtm−nf
(n)
u + k2

mDf (n)
v + k2

mf (n)
v D + itmD2f (n)

u + itmDf (n)
u D, (B 8)

B (m,n)
w = µ

(
−tm−2nf

(n)
u D − tm−nDf (n)

u + if (n)
v D2

)
, (B 9)

E(m,n)
v = µ

(
−Df (n)

u + inαk−2
m−nf

(n)
v D2

)
, (B 10)

E
(m,n)
θ = itmf (n)

u +
(
1 + nαtm−nk

−2
m−n

)
f (n)

v D, (B 11)

H (m,n)
v = inαk−2

m−n(µ
2 − tmtm−n)Df (n)

u D + k2
mk−2

m−n(µ
2 + tm−ntm−2n)f

(n)
v D

+ ik−2
m−n

(
−k2

m−ntm + 2nαµ
)
f (n)

u D2 + k−2
m−n

(
nαtm − k2

m

)
f (n)

v D3

+ ik2
mtm−2nf

(n)
u + itmD2f (n)

u , (B 12)

H
(m,n)
θ = nαµ

(
2tm−nk

−2
m−nf

(n)
u D + k−2

m−n(tm + tm−n)Df (n)
u − ik2

mk−2
m−nf

(n)
v

− ik−2
m−nf

(n)
v D2

)
, (B 13)

where k2
m = t2

m + µ2.
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